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Experimental data on heat conduction and a temperature jump in binary mixtures of nonreacting
gases with one condensing component in a low-pressure region are presented. The results have been
processed with account for modern concepts of interaction of differently structured gases with a sur-
face during energy transfer. It is shown that it is possible to obtain data on the thermal conductivity
of the vapor of high-boiling substances in a low-pressure region in the presence of a foreign noncon-
densing impurity when its evacuation from a measuring cell is difficult or impossible.

One of the problems of modern experimental investigations of the transport properties of differently
structured gases is measurement of the thermal conductivity of the vapor of high-boiling substances, for ex-
ample, metal vapor. The physicochemical properties of many metals are such that the pressure of their vapor
in experimentally implemented temperature ranges is much lower than atmospheric. Under these conditions,
in measurement of the thermal conductivity of gases, the correction for a temperature jump at the gas–meas-
uring cell interface becomes determining. The value of the correction depends on the structure of the gas
molecules, their thermal accommodation on the surface, and on the regime of flow, i.e., on the ratio between
the values of a mean free path of molecules and the characteristic (the smallest) size of the measuring cell.

The problems of the formation of a temperature jump and its exclusion from theoretical and experi-
mental data on the thermal conductivity of pure nonreacting and dissociating gases under the conditions of
local thermochemical equilibrium have been discussed at greater length in [1–7] in relation to investigations
of inert gases, air, sulphur hexafluoride, steam, vapor of carboxylic acids, and vapor of alkali metals.

In our opinion, the problem of the formation of a temperature jump in binary mixtures of nonreacting
gases and especially in the mentioned mixtures with one noncondensing component requires separate theoreti-
cal analysis. The above-mentioned situation often arises in measuring the thermal conductivity of the vapor
of high-boiling substances in the region of low pressures, where, for some reason, the measuring cell contains
a foreign noncondensing gas along with the main condensing component and separation of the mixture is
difficult or impossible by the conditions of the experiment. Therefore, the main tasks of this work are:

(1) experimental investigation and a subsequent analysis of the problems of the formation of a tem-
perature jump and determination of the heat-conduction coefficient of the main condensing component in bi-
nary mixtures of well-studied substances with prescribed compositions and pressures;

(2) model analysis of these same experimental data under the conditions of measurement of the ther-
mal conductivity of the vapor of high-boiling substances with an admixture of a foreign unknown gas and
development of appropriate recommendations;

(3) analysis of the available experimental data on the thermal conductivity of the vapor of   metals
with a foreign gas impurity.
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TABLE 1. Experimental Data on the Thermal Conductivity of H2O–Ne and H2O–Xe Mixtures 

p
H2O

, mm Hg X2
λexp⋅104, W/(m⋅K) λmix⋅104,

W/(m⋅K)
λcalc⋅104,
W/(m⋅K)cell No. 1 cell No. 2 cell No. 3

H2O−Ne mixture; p0Ne = 0.190 mm Hg; KnNe = 5.496 (cell No. 3)

0.157 0.547 71.80 44.78 30.80 303 321
0.216 0.468 83.78 53.54 37.30 285 300
0.319 0.373 10.8 67.59 48.48 270 278
0.509 0.272 127.8 89.76 66.95 256 256
0.659 0.224 142.1 107.7 78.46 244 248
1.246 0.132 172.4 139.7 114.1 231 231
1.928 0.090 186.2 161.3 137.9 222 220
2.905 0.061 194.2 176.5 157.9 217 214
4.072 0.044 198.9 185.6 170.9 216 212
6.478 0.028 202.0 194.2 183.1 212 211
9.139 0.020 203.9 197.9 189.7 212 210
17.40 0.011 208.4 203.3 198.1 213 209
29.12 0.006 209.5 206.1 199.8 211 208

H2O−Ne mixture; p0Ne = 0.752 mm Hg; KnNe = 1.389 (cell No. 3)

0.105 0.877 135.5 87.02 60.73 435 440
0.161 0.824 147.6 96.01 67.72 435 416
0.214 0.778 155.1 104.4 72.53 417 396
0.333 0.693 172.7 116.6 84.70 392 364
0.511 0.595 189.9 134.1 99.77 357 332
0.656 0.534 200.5 146.2 111.0 345 316
1.244 0.377 221.1 176.6 142.7 282 280
1.936 0.280 227.2 193.6 164.6 282 258
2.955 0.203 226.4 203.1 180.9 260 244
4.008 0.158 224.1 207.2 189.9 247 236
6.527 0.103 219.8 209.4 197.9 233 224
9.232 0.075 217.0 209.5 201.5 226 216
17.54 0.041 212.6 209.2 204.8 216 212
29.26 0.025 212.9 210.1 206.0 216 210

H2O−Xe mixture; p0Xe = 0.147 mm Hg; KnXe = 2.797 (cell No. 3)

0.031 0.826 16.77 10.16 7.05 79 81
0.058 0.717 24.40 15.24 10.73 87 96
0.092 0.615 31.24 19.97 14.18 111 109
0.140 0.512 41.20 26.97 19.31 111 124
0.223 0.397 56.84 38.53 28.15 133 139
0.329 0.309 74.33 52.46 38.84 143 154
0.438 0.251 88.68 64.48 48.89 154 164
0.594 0.198 104.5 79.54 61.28 159 173
0.768 0.161 118.5 93.30 73.71 168 180
1.136 0.114 139.2 114.8 93.49 182 188
1.765 0.077 159.9 138.4 120.1 196 195
2.495 0.056 171.6 154.7 139.1 196 198
3.952 0.036 183.8 171.5 159.2 200 202
6.808 0.021 192.8 185.1 178.3 202 204
9.139 0.016 194.6 190.0 183.7 201 205
17.37 0.009 200.4 196.4 194.4 204 206
33.92 0.004 203.5 202.2 200.5 205 207

H2O−Xe mixture; p0Xe = 0.869 mm Hg; KnXe = 0.473 (cell No. 3)

0.065 0.930 48.69 37.82 29.83 73 69
0.089 0.907 52.98 41.48 32.69 79 72
0.118 0.880 55.96 44.01 34.86 81 76
0.169 0.837 60.66 47.93 38.24 87 80
0.216 0.801 64.67 51.47 41.25 92 84
0.290 0.750 71.53 57.65 46.44 98 90
0.385 0.693 78.87 65.05 52.54 103 97
0.509 0.631 87.46 72.69 59.71 111 107
0.657 0.570 95.43 79.97 66.12 124 116
0.958 0.476 112.0 96.38 81.69 136 125
1.251 0.410 123.9 108.2 94.24 148 137
1.823 0.323 140.3 126.9 112.2 159 152
2.500 0.258 152.9 140.2 127.1 171 163
3.831 0.185 168.3 158.9 147. 4 180 176
6.164 0.124 180.5 174.2 163.4 190 187
10.59 0.076 191.9 186.1 181.6 198 195
14.86 0.055 196.1 190.8 187.9 200 198
21.87 0.038 199.0 195.9 193.1 203 201
30.52 0.028 199.1 198.4 195.4 202 203
42.33 0.020 202.2 201.6 198.2 206 205
42.42 0.020 202.3 201.1 198.1 206 205
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The studies in [1–7] were based on the Smoluchowskii equation:

(1 ⁄ λexp) = (1 ⁄ λtrue) + ABef
 ⁄ p , (1)

which relates the measured λexp and the true (molecular) λtrue thermal conductivities of a gas in the region of
low pressures irrespective of the gas structure and the character of intermolecular interaction. The term
ABef

 ⁄ p is a correction for the temperature jump. The term A is the so-called geometry factor of a temperature
jump; A = (r1 + r2)/(r1r2 ln (r1r2)) for a cylindrical cell with surface radii r1 and r2, A = 2/(r2 − r1) for a plane
cell with surface coordinates r1 and r2, and A = (r1

2 + r2
2)/(r1r2(r2 − r1)) for a spherical cell with surface radii

r1 and r2. The term Bef is the physical factor (hereinafter simply the factor) of the temperature jump related
to the structure of gas molecules, the character of intermolecular interactions, and the accommodation of the
energy of molecules on the surface of the cell. In [3] it is shown that in a particular case of a binary mixture
of nonreacting gases Eq. (1) becomes

(1 ⁄ λexp) = (1 ⁄ λtrue.mix) + ABmix
 ⁄ pmix , (2)

Bmix = [(2 − ξmixαmix) ⁄ 2αmix] [(X1
 ⁄ B1) + (X2

 ⁄ B2)]
−1 , (3)

where X1 = ps
 ⁄ pmix, X2 = p0

 ⁄ pmix, pmix = (ps + p0), B1 = 8(γ1 − 1)T/((γ1 + 1)V1), B2 = 8(γ2 − 1)T/((γ2 + 1)V2),
T is the mixture temperature, γ1,2 = (Cp

 ⁄ Cv)1,2 is the ratio of isobaric and isochoric heat capacities of each of
the components, and V1,2 = (8RT/(πM1,2))0.5 are the mean velocities of the thermal motion of the molecules
of the components. The effective coefficient of mixture energy accommodation αmix can be found from the
formula [3]

αmix = 
α1X1V1 (γ1 + 1) ⁄ (γ1 − 1) + α2X2V2 (γ2 + 1) ⁄ (γ2 − 1)

X1V1 (γ1 + 1) ⁄ (γ1 − 1) + X2V2 (γ2 + 1) ⁄ (γ2 − 1)
 . (4)

The function ξmix is a complicated function of the mixture composition and of the Knudsen number of the
mixture and is among the subjects of investigation in this work.

An analysis of relations (1)–(4) shows that to determine λmix in the region of low pressures it is
possible to use a method of several measuring cells of different geometries which has already been used in
[6, 7] to determine the thermal conductivity of pure gases and steam. The method employs measurement of
λexp simultaneously by several (in our case, three) measuring cells having different A and being under the
same conditions. According to (2), extrapolation of the straight line or of the slightly curved line (1 ⁄ λexp) =
f(A), passing through experimental points, to the ordinate axis gives the value of λmix(X1, pmix). Thus, the
method makes it possible to find the molecular thermal conductivity of the mixture only on the basis of ex-
perimental data. A detailed analysis of the curves will, probably, allow one to determine the components (3)
and (4).

Measurements were made by three cells organized according to a heated-filament method. The fila-
ments are tungsten wires with radii r1 = 0.054, 0.025, and 0.0155 mm. Their length is equal to about 195
mm. The capillaries are made of a molybdenum tube with inner radius r2 = 3.40 mm. Thus, cell Nos. 1, 2,
and 3 (see Table 1) had the geometry factors of a temperature jump A = 4.541, 8.202, and 12.022 mm−1,
respectively.

In the present work, the binary mixtures selected were mixtures of inert gases (neon and xenon) with
steam. As has already been mentioned, these substances were studied in [6, 7] and dependences of the func-
tion ξ on the Knudsen number were obtained for them. A binary mixture with steam was prepared in the
following way. A portion of an inert gas is admitted into an exhausted and thermostatted working section
which has measuring cells and which is connected with an evaporation tank with distilled water frozen to the
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temperature of liquid nitrogen. The inert gas pressure is measured by a McLeod compression manometer with
an error not higher than ±1%. Then, the working section is closed and the evaporation tank is heated to a
temperature corresponding to the required pressure of steam. The pressure of the steam is determined by the
temperature of the evaporation tank and in accordance with the recommendations of [8, 9].

The reliability of all the units of the experimental setup was verified by numerous studies of the ther-
mal conductivity of different gases and vapor [5–7]. The error in the determination of λexp is not more than
2%. The H2O–Ne (p0Ne = 0.190 and 0.752 mm Hg) and H2O–Xe (p0Xe = 0.147 and 0.869 mm Hg) mixtures
were investigated on the 325 K isotherm. Table 1 presents experimental results and also the values of the
molecular thermal conductivity of the mixture λmix; they were obtained by processing experimental data in
the coordinates λexp

−1  − A. Figure 1 shows the possibility of determining λmix(X1, pmix) by the method of sev-
eral measuring cells. The accuracy of the determination of λmix depends, first of all, on the minimum value
of A and the extrapolation "range" of the curve f(A) to the ordinate axis. In this case, the error in determining
λmix is evaluated to be 8–10% at minimum pressures of the experiments and it decreases with increase in
pressure.

Table 1 gives the values of the Knudsen number for cell No. 3 at pressures of inert gases. As follows
from Table 1, the main body of experimental data for mixtures has been obtained in the region of the tem-
perature jump (Knmix < 1); therefore, the notion of the thermal-conductivity coefficient λtrue can be used for
all experimental points.

To estimate the results obtained, the values of λmix obtained in this work were compared with calcu-
lated values of λmix.calc. Because of the absence at the present time of a theory for accurate calculation of the
thermal conductivity of a mixture of polyatomic gases, usually semiempirical methods are used, most of
which in the case of a binary mixture lead to the equation [10]

λmix = λ1
 ⁄ [1 + A12 (X2

 ⁄ X1)] + λ2
 ⁄ [1 + A21 (X1

 ⁄ X2)] , (5)

in which λ1 and λ2 are the thermal conductivities of the components. The parameters A12 and A21 for a mix-
ture in which one gas is polar can be calculated in terms of the viscosities of the components η1 and η2 and
their molecular masses [10]:

Aij = 1.065 [1 + ηi
 ⁄ ηj)

0.5 (Mj
 ⁄ Mi)

0.25]2 ⁄ 



2 √2  [1 + (Mi

 ⁄ Mj)]
0.5



 . (6)

A comparison (see Table 1) indicates a fairly good agreement with the results of calculation obtained for
each of the two mixtures with different pressures of inert gases. A noticeable (up to 9%) discrepancy is ob-
served only for an H2O–Ne mixture at a minimum pressure of steam.

Fig. 1. Dependence of λexp
−1  on the geometry of the measuring cell for an

H2O–Xe mixture (p0Xe = 0.869 mm Hg) at different values of steam (in-
dicated in the figure): 1–3) cell numbers. λexp

−1 , m⋅K/W; A, mm−1.
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The data obtained for λexp(X1, pmix) and λmix(X1, pmix) make it possible, using Eq. (2), to determine
the temperature-jump factor Bmix.exp with different compositions of the mixture and pressure of impurity. The
results of calculation for an H2O–Ne mixture are presented in Fig. 2. An analysis of the data on Bmix.exp has
shown that the best approximation of experimental points in Fig. 2 is given by the expression

Bmix.exp = 

X1 [2α1

 ⁄ ((2 − ξ1α1) B1)] + X2 [2α2
 ⁄ ((2 − ξ2α2) B2)]





−1
 , (7)

where the dependences of ξ1 and ξ2 of pure components on the Knudsen number (see Fig. 3) and the values
of the accommodation coefficients α1 and α2 were taken from [6, 7]. For (7), the Knudsen number of mixture
Knmix is given by the expression

Knmix = 
kT [X1V1 + X2V2]

π √2 pmixr1 ln (r2r1) [X1
2σ11

2 V1 + 2X1X2σ12
2 V12 + X2

2σ22
2 V2]

 . (8)

The collision cross sections σ11
2 , σ12

2 , and σ22
2  were taken from [10].

A comparison of (3) and (7) yields the dependence of the accommodation group (2 − ξmixαmix)/
2αmix and, consequently, of the function ξmix on the composition of the mixture and Knmix. The results of the
calculation of ξmix are presented in Fig. 3. An analysis of this figure shows that the separation of the curves
ξmix(Knmix) at different compositions of the mixture occurs only at different dependences ξ1(Kn) and ξ2(Kn)
of pure components. For a mixture of monatomic gases, for which ξ(Kn) is described by a single curve [6],
one should expect the existence of the dependence ξmix(Knmix), which is the same for all compositions.

To study the possibility of determining the thermal conductivity of the main condensing component
from experiments at low pressures ps in the presence of a foreign unknown noncondensing impurity, we pre-
sent the data of Table 1 in Fig. 4. It follows from Fig. 4 that the thermal conductivity of the main condensing
component for all of the measuring cells of the present work is determined rather reliably, and the results
obtained mean that in measuring the thermal conductivity of metal vapor or the vapor of other high-boiling
substances one may ignore the presence of a foreign noncondensing impurity in a measuring cell. Rather
accurate values of λtrue of the main condensing component can be obtained by constructing experimental data
in the coordinates (1 ⁄ λexp−1 ⁄ ps). It should be kept in mind that the pressure of a noncondensing impurity
must be of the same order of magnitude as the pressure of the main component.

Fig. 2. Dependence of the factor of a temperature jump Bmix of an
H2O−Ne mixture on the composition of the mixture and pressure of im-
purity: 1) p0Ne = 0.190 mm Hg; 2) 0.752. Bmix, K⋅sec/m.

Fig. 3. Dependence of ξmix on the Knudsen number and composition for
mixtures of steam and inert gases: 1) H2O−Xe; 2) H2O−Ne. 
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Table 2 and Fig. 5 give experimental data on the measurement of the thermal conductivity of sodium
vapor on the 1050 K isotherm as a function of pressure. The measurements were made by a heated-filament
method with a zero section for corrosive media; the main body of the experimental data was published in
[11]. A measuring cell has the following dimensions: r1 = 0.0502 mm; r2 = 2.80 mm; Lfil = 165.76 mm; the
geometry factor of a temperature jump is A = 5.0424 mm−1. As follows from Fig. 5, in the first series of
measurements the experimentally determined thermal conductivity coefficient λexp of sodium vapor does not
reach the value λexp = 0 at p = 0, indicating the presence of a foreign noncondensing gas in the measuring
cell. Figure 6 presents the mentioned data in the coordinates (1 ⁄ λexp)−(1 ⁄ psNa). Just as in the case of the
mixture of steam with inert gases, extrapolation of the approximation curve to the ordinate axis makes it
possible to determine the thermal conductivity of the main condensing component. In the discussed experi-
ment with sodium vapor, it was possible to evacuate a foreign gas from the measuring cell. As follows from
Fig. 5, in the second series of measurements, λexp of sodium tends to zero at p = 0, indicating the absence
of a foreign noncondensing gas in the measuring cell. The data of the second series are presented in Fig. 6
and are in good agreement with the results of the first series. It follows from comparison of the results of
both series of measurements in Fig. 6 that the construction of experimental data in the coordinates
(1 ⁄ λexp)−(1 ⁄ ps) allows the determination of the true thermal conductivity of the main condensing component,

Fig. 4. Experimental data for an H2O−Xe mixture (p0Xe = 0.869 mm Hg)
in the coordinates λexp

−1 −pH2O
−1 : 1) cell No. 1; 2) No. 2; 3) No. 3. p−1, (mm

Hg)−1.

TABLE 2. Experimental Data on the Thermal Conductivity of an Na–H2 Mixture and Pure Vapor of Na on the
1050 K Isotherm

Pure hydrogen

Mixture of Na vapor with hydrogen Pure vapor of Na

pNa, 
mm Hg

pmix,
mm Hg X2

λexp⋅104,
W/(m⋅K)

λmix⋅104,
W/(m⋅K)

Bmix
pNa,

 mm Hg
λexp⋅104,
W/(m⋅K)

λH2 [13] = 0.4670 W/(m⋅K);
BH2 = 2.00; 
α = 0.158 (for ξ = 0); 
pH2 = 1.245 mm Hg

0 1.245 1.000 120.3 44670 2.000 0.594 75.82

0.216 1.461 0.852 138.9 887 1.698 0.595 75.53

0.322 1.567 0.795 147.0 613 1.607 1.218 123.6

0.667 1.912 0.651 167.9 449 1.414 2.538 181.8

0.808 2.053 0.606 179.5 450 1.364 7.452 255.1

2.132 3.377 0.369 227.3 372 1.146 13.832 285.7

3.864 5.109 0.244 257.7 352 1.058 14.250 287.1

6.688 7.933 0.157 279.2 340 1.003 21.242 306.6

25.48 26.72 0.046 319.2 338 0.941
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for example, metal vapor, without evacuating a foreign gas impurity. Thus, we can state that the third task
posed in the present article has been positively solved.

Additional experiments on inflow into an exhausted closed cell allowed us to determine the character
of a foreign gas. During the inflow, time dependences of pressure in the cell pcell(τ) and the values of
(Qel

 ⁄ ∆t) − τ were recorded and then analyzed. The technique of the experiment and experimental results are
given in detail in [12]; an analysis of the data obtained disclosed the presence of hydrogen in the cell.

According to Eq. (1), the derivative of λexp(p) at p = 0 is

(dλexp
 ⁄ dp)p=0 = (1 ⁄ 8) [2α ⁄ (2 − ξα) ] [(γ + 1) V (T) ⁄ ((γ − 1) T)] A−1 . (9)

Using this relation and the data on inflow [12], we determined the factor of a temperature jump of hydrogen
BH2

 and the coefficient of energy accommodation αH2
 at ξH2

 = 0. The results of calculation are given in Table
2. At the known values of αH2

 and λexp(pNa → 0), the pressure of hydrogen as an impurity in sodium vapor
can be calculated by Eq. (1) in the first series of measurements (Table 2). The calculations showed that the
pressure of a foreign gas — hydrogen — was pH2

 = 1.245 mm Hg. Since in this case KnH2
 >> 1, in the

calculations we took the value of ξH2
 = 0 [6]. In the calculations we used the data on λtrue(T) for hydrogen

[13].
It is shown in [14] that the coefficients of energy accommodation of alkali metal vapor (α ≤ 1) that

agree with theoretical notions can be obtained only for the upper limiting value ξ = ξ0 = 0.8533. If we take
ξ = 0 for alkali metal vapor for p → 0, then the coefficients of energy accommodation of monomers take
values much greater than unity. The rapid transition of the function ξ to its upper limiting value seems to be
typical of dissociating gases, since a similar picture is observed also in steam (see Fig. 3). The results of
calculation of Bmix by (7) with regard for the comments made relative to ξH2

 and ξNa are presented in Table
2. This same table also contains the calculated results for the λmix of a mixture of sodium vapor with hydro-
gen after the introduction of a correction for the temperature jump in accordance with Eq. (2).

Fig. 5. Dependence of λexp of sodium vapor (two series of measure-
ments) on pressure [11, 12]: 1) first series of measurements (mixture of
Na and H2 vapors); 2) second series of measurements (pure Na vapor).
λexp, W/(m⋅K); psNa, mm Hg.

Fig. 6. Experimental data for an Na−H2 mixture (pH2
 = 1.245 mm Hg)

[1) first series of measurements] and pure vapor of sodium [2) second
series of measurements] in the coordinates λexp

−1 −psNa
−1 .
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NOTATION

λexp, λtrue, and λtrue.mix, experimental, true, and true for gas mixture thermal-conductivity coefficients;
A, geometry factor of a measuring cell; r1 and r2, radii of the filament and the inner surface of the tube of
the measuring cell; Bef, factor of the temperature jump; Bmix, factor of the temperature jump of a mixture of
nonreacting gases; p, gas pressure; p0, pressure of inert gas; ps, saturation pressure of a condensing compo-
nent; pmix, pressure of a mixture; X1 and X2, mole fractions of components; V(T), thermal velocities of mole-
cules; M, relative molecular mass; Cp and Cv, isobaric and isochoric thermal conductivities; γ, ratio of
isobaric and isochoric thermal conductivities; α1, α2, and αmix, coefficients of energy accommodation of com-
ponents and gas mixture; ξmix, correction function; σ, cross section for interaction; η, viscosity; Kn, Knudsen
number; Qel, electric power liberated by a heated filament.
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